
RDBMS to MongoDB Migration Guide
Considerations and Best Practices

June 2016

A MongoDB White Paper

Table of Contents
1Introduction

1Organizing for Success

2Schema Design

From Rigid Tables to Flexible and Dynamic BSON

3Documents

4Other Advantages of the Document Model

5Joining Collections for Data Analytics

5DeTning the Document Schema

Modeling Relationships with Embedding and

5Referencing

5Embedding

6Rerencing

6Different Design Goals

7Indexing

7Index Types

8Optimizing Performance With Indexes

9Schema Evolution and the Impact on Schema Design

10Application Integration

10MongoDB Drivers and the API

10Mapping SQL to MongoDB Syntax

10MongoDB Aggregation Framework

11MongoDB Connector for BI

11Atomicity in MongoDB

12Maintaining Strong Consistency

12Write Durability

13Implementing Validation & Constraints

13Foreign Keys

13Document Validation

14Enforcing Constraints With Indexes

14Migrating Data to MongoDB

15Operational Agility at Scale

15MongoDB Atlas: Database as a Service For MongoDB

16Supporting Your Migration: MongoDB Services

16MongoDB University

16Community Resources and Consulting

16Conclusion

16We Can Help

17Resources

Introduction

The relational database has been the foundation of

enterprise data management for over thirty years.

But the way we build and run applications today, coupled

with unrelenting growth in new data sources and growing

user loads are pushing relational databases beyond their

limits. This can inhibit business agility, limit scalability and

strain budgets, compelling more and more organizations to

migrate to alternatives like MongoDB or NoSQL

databases.

As illustrated in Figure 1, enterprises from a variety of

industries have migrated successfully from relational

database management systems (RDBMS) to MongoDB for

myriad applications.

This guide is designed for project teams that want to know

how to migrate from an RDBMS to MongoDB. We provide

a step-by-step roadmap, depicted in Figure 2.

Many links are provided throughout this document to help

guide users to the appropriate resources online. For the

most current and detailed information on particular topics,

please see the online documentation.

Organizing for Success

Before considering technologies and architecture, a key to

success is involving all key stakeholders for the application,

including the line of business, developers, data architects,

DBAs and systems administrators. In some organizations,

these roles may be combined.

The project team should work together to deTne business

and technical objectives, timelines and responsibilities,

meeting regularly to monitor progress and address any

issues.

There are a range of services and resources from

MongoDB and the community that help build MongoDB

skills and proTciency, including free, web-based training,

support and consulting. See the MongoDB Services

section later in this guide for more detail.

1

http://docs.mongodb.com/manual/

OrOrganizationganization Migrated FMigrated Frromom ApplicApplicationation

eHarmony Oracle & Postgres Customer Data Management & Analytics

ShutterUy Oracle Web and Mobile Services

Cisco Multiple RDBMS Analytics, Social Networking

Craigslist MySQL Archive

Under Armour Microsoft SQL Server eCommerce

Foursquare PostgreSQL Social, Mobile Networking Platforms

MTV Networks Multiple RDBMS Centralized Content Management

Buzzfeed MySQL Real-Time Analytics

Verizon Oracle Single View, Employee Systems

The Weather Channel Oracle & MySQL Mobile Networking Platforms

FigurFigure 1:e 1: Case Studies

Schema Design

The most fundamental change in migrating from a

relational database to MongoDB is the way in which the

data is modeled.

As with any data modeling exercise, each use case will be

different, but there are some general considerations that

you apply to most schema migration projects.

Before exploring schema design, Figure 3 provides a

useful reference for translating terminology from the

relational to MongoDB worlds.

Schema design requires a change in perspective for data

architects, developers and DBAs:

FigurFigure 2:e 2: Migration Roadmap

• From the legacy relational data model that Uattens data

into rigid 2-dimensional tabular structures of rows and

columns.

• To a rich and dynamic document data model with

embedded sub-documents and arrays.

2

RRDBDBMMSS MongoDBMongoDB

Database Database

Table Collection

Row Document

Index Index

JOIN Embedded document, document references

or $lookup to combine data from different

collections

FigurFigure 3:e 3: Terminology Translation

From Rigid Tables to Flexible and

Dynamic BSON Documents

Much of the data we use today has complex structures that

can be modeled and represented more efTciently using

JSON (JavaScript Object Notation) documents, rather than

tables.

MongoDB stores JSON documents in a binary

representation called BSON (Binary JSON). BSON

FigurFigure 4:e 4: Relational Schema, Flat 2-D Tables

encoding extends the popular JSON representation to

include additional data types such as int, long and Uoating

point.

With sub-documents and arrays, JSON documents also

align with the structure of objects at the application level.

This makes it easy for developers to map the data used in

the application to its associated document in the database.

By contrast, trying to map the object representation of the

data to the tabular representation of an RDBMS slows

down development. Adding Object Relational Mappers

(ORMs) can create additional complexity by reducing the

Uexibility to evolve schemas and to optimize queries to

meet new application requirements.

The project team should start the schema design process

by considering the application’s requirements. It should

model the data in a way that takes advantage of the

document model’s Uexibility. In schema migrations, it may

be easy to mirror the relational database’s Uat schema to

the document model. However, this approach negates the

advantages enabled by the document model’s rich,

embedded data structures. For example, data that belongs

to a parent-child relationship in two RDBMS tables would

3

commonly be collapsed (embedded) into a single

document in MongoDB.

In Figure 4, the RDBMS uses the "Pers_ID" Teld to JOIN

the "Person" table with the "Car" table to enable the

application to report each car’s owner. Using the document

model, embedded sub-documents and arrays effectively

pre-JOIN data by combining related Telds in a single data

structure. Rows and columns that were traditionally

normalized and distributed across separate tables can now

be stored together in a single document, eliminating the

need to JOIN separate tables when the application has to

retrieve complete records.

Modeling the same data in MongoDB enables us to create

a schema in which we embed an array of sub-documents

for each car directly within the Person document.

{
first_name: “Paul”,
surname: “Miller”,
city: “London”,
location: [45.123,47.232],
cars: [

{ model: “Bentley”,
year: 1973,
value: 100000, ….},

{ model: “Rolls Royce”,
year: 1965,
value: 330000, ….},

]
}

In this simple example, the relational model consists of only

two tables. (In reality most applications will need tens,

hundreds or even thousands of tables.) This approach does

not reUect the way architects think about data, nor the way

in which developers write applications. The document

model enables data to be represented in a much more

natural and intuitive way.

To further illustrate the differences between the relational

and document models, consider the example of a blogging

platform in Figure 5. In this example, the application relies

on the RDBMS to join Tve separate tables in order to build

the blog entry. With MongoDB, all of the blog data is

contained within a single document, linked with a single

reference to a user document that contains both blog and

comment authors.

FigurFigure 5:e 5: Pre-JOINing Data to Collapse 5 RDBMS Tables

to 2 BSON Documents

Other Advantages of the Document Model

In addition to making it more natural to represent data at

the database level, the document model also provides

performance and scalability advantages:

• The complete document can be accessed with a single

call to the database, rather than having to JOIN multiple

tables to respond to a query. The MongoDB document

is physically stored as a single object, requiring only a

single read from memory or disk. On the other hand,

4

RDBMS JOINs require multiple reads from multiple

physical locations.

• As documents are self-contained, distributing the

database across multiple nodes (a process called

sharding) becomes simpler and makes it possible to

achieve massive horizontal scalability on commodity

hardware. The DBA no longer needs to worry about the

performance penalty of executing cross-node JOINs

(should they even be possible in the existing RDBMS)

to collect data from different tables.

Joining Collections for Data Analytics

Typically it is most advantageous to take a denormalized

data modeling approach for operational databases – the

efTciency of reading or writing an entire record in a single

operation outweighing any modest increase in storage

requirements. However, there are examples where

normalizing data can be beneTcial, especially when data

from multiple sources needs to be blended for analysis –

MongoDB 3.2 adds that capability with the $lookup stage

in the MongoDB Aggregation Framework.

The Aggregation Framework is a pipeline for data

aggregation modeled on the concept of data processing

pipelines. Documents enter a multi-stage pipeline that

transforms the documents into aggregated results. The

pipeline consists of stages; each stage transforms the

documents as they pass through.

While not offering as rich a set of join operations as some

RDBMSs, $lookup provides a left outer equi-join which

provides convenience for a selection of analytics use

cases. A left outer equi-join, matches and embeds

documents from the "right" collection in documents from

the "left" collection.

As an example if the left collection contains order

documents from a shopping cart application then the

$lookup operator can match the product_id references

from those documents to embed the matching product

details from the products collection.

Worked examples of using $lookup as well as other

agggregation stages can be found in the blog – Joins and

Other Aggregation Enhancements.

DeTning the Document Schema

The application’s data access patterns should govern

schema design, with speciTc understanding of:

• The read/write ratio of database operations and

whether it is more important to optimize performance

for one over the other

• The types of queries and updates performed by the

database

• The life-cycle of the data and growth rate of documents

As a Trst step, the project team should document the

operations performed on the application’s data, comparing:

1. How these are currently implemented by the relational

database;

2. How MongoDB could implement them.

Figure 6 represents an example of this exercise.

This analysis helps to identify the ideal document schema

for the application data and workload, based on the queries

and operations to be performed against it.

The project team can also identify the existing application's

most common queries by analyzing the logs maintained by

the RDBMS. This analysis identiTes the data that is most

frequently accessed together, and can therefore potentially

be stored together within a single MongoDB document. An

example of this process is documented in the Apollo

Group’s migration from Oracle to MongoDB when

developing a new cloud-based learning management

platform.

Modeling Relationships with Embedding

and Referencing

Deciding when to embed a document or instead create a

reference between separate documents in different

collections is an application-speciTc consideration. There

are, however, some general considerations to guide the

decision during schema design.

Embedding

Data with a 1:1 or 1:many relationship (where the “many”

objects always appear with, or are viewed in the context of

5

https://docs.mongodb.com/manual/aggregation/
https://www.mongodb.com/blog/post/joins-and-other-aggregation-enhancements-coming-in-mongodb-3-2-part-1-of-3-introduction
https://www.mongodb.com/blog/post/joins-and-other-aggregation-enhancements-coming-in-mongodb-3-2-part-1-of-3-introduction
http://www.mongodb.com/lp/whitepaper/nosql-oracle-migration-mongodb
http://www.mongodb.com/lp/whitepaper/nosql-oracle-migration-mongodb

ApplicApplicationation RRDBDBMMS ActionS Action
MongoDBMongoDB

ActionAction

Create

Product

Record

INSERT to (n)
tables (product

description, price,

manufacturer, etc.)

insert() to 1

document

Display

Product

Record

SELECT and JOIN
(n) product tables

find() single

document

Add

Product

Review

INSERT to “review”

table, foreign key

to product record

insert() to

“review”

collection,

reference to

product

document

More

Actions…

…… ……

FigurFigure 6:e 6: Analyzing Queries to Design the Optimum

Schema

their parent documents) are natural candidates for

embedding within a single document. The concept of data

ownership and containment can also be modeled with

embedding. Using the product data example above,

product pricing – both current and historical – should be

embedded within the product document since it is owned

by and contained within that speciTc product. If the product

is deleted, the pricing becomes irrelevant.

Architects should also embed Telds that need to be

modiTed together atomically. (Refer to the Application

Integration section of this guide for more information.)

Not all 1:1 relationships should be embedded in a single

document. Referencing between documents in different

collections should be used when:

• A document is frequently read, but contains an

embedded document that is rarely accessed. An

example might be a customer record that embeds

copies of the annual general report. Embedding the

report only increases the in-memory requirements (the

working set) of the collection

• One part of a document is frequently updated and

constantly growing in size, while the remainder of the

document is relatively static

• The document size exceeds MongoDB’s current 16MB

document limit

Referencing

Referencing enables data normalization, and can give more

Uexibility than embedding. But the application will issue

follow-up queries to resolve the reference, requiring

additional round-trips to the server.

References are usually implemented by saving the _id

Teld
1

of one document in the related document as a

reference. A second query is then executed by the

application to return the referenced data.

Referencing should be used:

• When embedding would not provide sufTcient read

performance advantages to outweigh the implications

of data duplication

• Where the object is referenced from many different

sources

• To represent complex many-to-many relationships

• To model large, hierarchical data sets.

The $lookup stage in an aggregation pipeline can be used

to match the references with the _ids from the second

collection to automatically embed the referenced data in

the result set.

Different Design Goals

Comparing these two design options – embedding

sub-documents versus referencing between documents –

highlights a fundamental difference between relational and

document databases:

• The RDBMS optimizes data storage efTciency (as it

was conceived at a time when storage was the most

expensive component of the system)

1. A required unique Teld used as the primary key within a MongoDB document, either generated automatically by the driver or speciTed by the user.

6

• MongoDB’s document model is optimized for how the

application accesses data (as developer time and speed

to market are now more expensive than storage)

Data modeling considerations, patterns and examples

including embedded versus referenced relationships are

discussed in more detail in the documentation.

Indexing

In any database, indexes are the single biggest tunable

performance factor and are therefore integral to schema

design.

Indexes in MongoDB largely correspond to indexes in a

relational database. MongoDB uses B-Tree indexes, and

natively supports secondary indexes. As such, it will be

immediately familiar to those coming from a SQL

background.

The type and frequency of the application’s queries should

inform index selection. As with all databases, indexing does

not come free: it imposes overhead on writes and resource

(disk and memory) usage.

Index Types

MongoDB has a rich query model that provides Uexibility in

how data is accessed. By default, MongoDB creates an

index on the document’s _id primary key Teld.

All user-deTned indexes are secondary indexes. Any Teld

can be used for a secondary index, including Telds within

arrays.

Index options for MongoDB include:

• Compound Indexes.Compound Indexes. Using index intersection

MongoDB can use more than one index to satisfy a

query. This capability is useful when running ad-hoc

queries as data access patterns are typically not known

in advance. Where a query that accesses data based on

multiple predicates is known, it will be more performant

to use Compound Indexes, which use a single index

structure to maintain references to multiple Telds. For

example, consider an application that stores data about

customers. The application may need to Tnd customers

based on last name, Trst name, and state of residence.

With a compound index on last name, Trst name, and

state of residence, queries could efTciently locate

people with all three of these values speciTed. An

additional beneTt of a compound index is that any

leading Teld(s) within the index can be used, so fewer

indexes on single Telds may be necessary: this

compound index would also optimize queries looking for

customers by last name or last name and Trst name.

• Unique Indexes.Unique Indexes. By specifying an index as unique,

MongoDB will reject inserts of new documents or

updates to existing documents which would have

resulted in duplicate values for the indexed Teld. By

default, all indexes are not set as unique. If a compound

index is speciTed as unique, the combination of values

must be unique.

• Array Indexes.Array Indexes. For Telds that contain an array, each

array value is stored as a separate index entry. For

example, documents that describe a product might

include a Teld for its main attributes. If there is an index

on the attributes Teld, each attribute is indexed and

queries on the attribute Teld can be optimized by this

index. There is no special syntax required for creating

array indexes – if the Teld contains an array, it will be

indexed as an array index.

• TTTL Indexes.TL Indexes. In some cases data should expire

automatically. Time to Live (TTL) indexes allow the user

to specify a period of time after which the database will

automatically delete the data. A common use of TTL

indexes is applications that maintain a rolling window of

history (e.g., most recent 100 days) for user actions

such as clickstreams.

• Geospatial Indexes.Geospatial Indexes. MongoDB provides geospatial

indexes to optimize queries related to location within a

two-dimensional space, such as projection systems for

the earth. These indexes allow MongoDB to optimize

queries for documents that contain a polygon or points

that are closest to a given point or line; that are within a

circle, rectangle or polygon; or that intersect a circle,

rectangle or polygon.

• Sparse Indexes.Sparse Indexes. Sparse indexes only contain entries

for documents that contain the speciTed Teld. Because

MongoDB’s allows the data model to vary from one

document to another, it is common for some Telds to be

present only in a subset of all documents. Sparse

indexes allow for smaller, more efTcient indexes when

Telds are not present in all documents.

7

http://docs.mongodb.com/manual/core/data-modeling/

• Partial Indexes.Partial Indexes. MongoDB 3.2 introduces Partial

Indexes which can be viewed as a more Uexible

evolution of Sparse Indexes, where the DBA can specify

an expression that will be checked to determine

whether a document should be included in a particular

index. e.g. for an "orders" collection, an index on state

and delivery company might only be needed for active

orders and so the index could be made conditional on

{orderState: "active"} – thereby reducing the

impact to memory, storage and write performance while

still optimizing searches over the active orders.

• Hash Indexes.Hash Indexes. Hash indexes compute a hash of the

value of a Teld and index the hashed value. The primary

use of this index is to enable hash-based sharding, a

simple and uniform distribution of documents across

shards.

• TText Searext Searcch Indexes.h Indexes. MongoDB provides a specialized

index for text search that uses advanced,

language-speciTc linguistic rules for stemming,

tokenization and stop words. Queries that use the text

search index return documents in relevance order. Each

collection may have at most one text index but it may

include multiple Telds.

MongoDB’s storage engines all support all index types and

the indexes can be created on any part of the JSON

document – including inside sub-documents and array

elements – making them much more powerful than those

offered by RDBMSs.

Optimizing Performance With Indexes

MongoDB’s query optimizer selects the index empirically by

occasionally running alternate query plans and selecting

the plan with the best response time. The query optimizer

can be overridden using the cursor.hint() method.

As with a relational database, the DBA can review query

plans and ensure common queries are serviced by

well-deTned indexes by using the explain() function

which reports on:

• The number of documents returned

• Which index was used – if any

• Whether the query was covered, meaning no documents

needed to be read to return results

• Whether an in-memory sort was performed, which

indicates an index would be beneTcial

• The number of index entries scanned

• The number of documents read

• How long the query took to resolve, reported in

milliseconds

• Alternate query plans that were assessed but then

rejected

MongoDB provides a range of logging and monitoring tools

to ensure collections are appropriately indexed and queries

are tuned. These can and should be used both in

development and in production.

The MongoDB Database ProTler is most commonly used

during load testing and debugging, logging all database

operations or only those events whose duration exceeds a

conTgurable threshold (the default is 100ms). ProTling

data is stored in a capped collection where it can easily be

searched for relevant events – it is often easier to query

this collection than parsing the log Tles.

Delivered as part of MongoDB’s Ops Manager and Cloud

Manager platforms, the new Visual Query ProTler provides

a quick and convenient way for operations teams and

DBAs to analyze speciTc queries or query families. The

Visual Query ProTler (as shown in Figure 7) displays how

query and write latency varies over time – making it simple

to identify slower queries with common access patterns

and characteristics, as well as identify any latency spikes.

The visual query proTler will analyze data it collects to

provide recommendations for new indexes that can be

created to improve query performance. Once identiTed,

these new indexes need to be rolled out in the production

system and Ops/Cloud Manager automates that process –

performing a rolling index build which avoids any impact to

the application.

While it may not be necessary to shard the database at the

outset of the project, it is always good practice to assume

that future scalability will be necessary (e.g., due to data

growth or the popularity of the application). DeTning index

keys during the schema design phase also helps identify

keys that can be used when implementing MongoDB’s

auto-sharding for application-transparent scale-out.

8

https://www.mongodb.com/products/ops-manager
https://www.mongodb.com/products/cloud-manager
https://www.mongodb.com/products/cloud-manager

FigurFigure 7:e 7: Visual Query ProTling in MongoDB Ops Manager

Schema Evolution and the Impact on

Schema Design

MongoDB’s dynamic schema provides a major advantage

versus relational databases.

Collections can be created without Trst deTning their

structure, i.e., document Telds and their data types.

Documents in a given collection need not all have the

same set of Telds. One can change the structure of

documents just by adding new Telds or deleting existing

ones.

Consider the example of a customer record:

• Some customers will have multiple ofTce locations and

lines of business, and some will not.

• The number of contacts within each customer can be

different

• The information stored on each of these contacts can

vary. For instance, some may have public social media

feeds which could be useful to monitor, and some will

not.

• Each customer may buy or subscribe to different

services from their vendor, each with their own sets of

contracts.

Modeling this real-world variance in the rigid,

two-dimensional schema of a relational database is

complex and convoluted. In MongoDB, supporting variance

between documents is a fundamental, seamless feature of

BSON documents.

MongoDB’s Uexible and dynamic schemas mean that

schema development and ongoing evolution are

straightforward. For example, the developer and DBA

working on a new development project using a relational

database must Trst start by specifying the database

schema, before any code is written. At minimum this will

take days; it often takes weeks or months.

MongoDB enables developers to evolve the schema

through an iterative and agile approach. Developers can

start writing code and persist the objects as they are

created. And when they add more features, MongoDB will

continue to store the updated objects without the need for

performing costly ALTER TABLE operations or re-designing

the schema from scratch.

These beneTts also extend to maintaining the application

in production. When using a relational database, an

application upgrade may require the DBA to add or modify

Telds in the database. These changes require planning

across development, DBA and operations teams to

synchronize application and database upgrades, agreeing

9

on when to schedule the necessary ALTER TABLE

operations.

As MongoDB allows schemas to evolve dynamically, such

operations requires upgrading just the application, with

typically no action required for MongoDB. Evolving

applications is simple, and project teams can improve

agility and time to market.

At the point that the DBA or developer determines that

some constraints should be enforced on the document

structure, Document Validation rules can be added –

further details are provided later in this guide.

Application Integration

With the schema designed, the project can move towards

integrating the application with the database using

MongoDB drivers and tools.

DBA’s can also conTgure MongoDB to meet the

application’s requirements for data consistency and

durability. Each of these areas are discussed below.

MongoDB Drivers and the API

Ease of use and developer productivity are two of

MongoDB’s core design goals.

One fundamental difference between a SQL-based

RDBMS and MongoDB is that the MongoDB interface is

implemented as methods (or functions) within the API of a

speciTc programming language, as opposed to a

completely separate text-based language like SQL. This,

coupled with the afTnity between MongoDB’s BSON

document model and the data structures used in

object-oriented programming, makes application

integration simple.

MongoDB has idiomatic drivers for the most popular

languages, including eleven developed and supported by

MongoDB (e.g., Java, Python, .NET, PHP) and more than

30 community-supported drivers.

MongoDB’s idiomatic drivers minimize onboarding time for

new developers and simplify application development. For

instance, Java developers can simply code against

MongoDB natively in Java; likewise for Ruby developers,

PHP developers and so on. The drivers are created by

development teams that are experts in their given language

and know how programmers prefer to work within those

languages.

Mapping SQL to MongoDB Syntax

For developers familiar with SQL, it is useful to understand

how core SQL statements such as CREATE, ALTER,

INSERT, SELECT, UPDATE and DELETE map to the

MongoDB API. The documentation includes a comparison

chart with examples to assist in the transition to MongoDB

Query Language structure and semantics. In addition,

MongoDB offers an extensive array of advanced query

operators.

MongoDB Aggregation Framework

Aggregating data within any database is an important

capability and a strength of the RDBMS.

Many NoSQL databases do not have aggregation

capabilities. As a result, migrating to NoSQL databases has

traditionally forced developers to develop workarounds,

such as:

1. Building aggregations within their application code,

increasing complexity and compromising performance.

2. Exporting data to Hadoop to run MapReduce jobs

against the data. This also drastically increases

complexity, duplicates data across multiple data stores

and does not allow for real-time analytics.

3. If available, writing native MapReduce operations within

the NoSQL database itself.

MongoDB provides the Aggregation Framework natively

within the database, which delivers similar functionality to

the GROUP BY and related SQL statements.

When using the Aggregation Framework, documents in a

collection pass through an aggregation pipeline, where

they are processed in stages. Expressions produce output

documents based on calculations performed on the input

documents. The accumulator expressions used in the

$group stage maintain state (e.g., totals, maximums,

10

http://docs.mongodb.com/ecosystem/drivers/
http://docs.mongodb.com/ecosystem/drivers/
http://docs.mongodb.com/manual/reference/sql-comparison/
http://docs.mongodb.com/manual/reference/sql-comparison/
http://docs.mongodb.com/manual/reference/operator/
http://docs.mongodb.com/manual/reference/operator/

FigurFigure 8:e 8: Uncover new insights with powerful visualizations generated from MongoDB

minimums, averages, standard deviations and related data)

as documents progress through the pipeline.

The SQL to Aggregation Mapping Chart shows a number

of examples demonstrating how queries in SQL are

handled in MongoDB’s Aggregation Framework. To enable

more complex analysis, MongoDB also provides native

support for MapReduce operations in both sharded and

unsharded collections.

Business Intelligence Integration –

MongoDB Connector for BI

Driven by growing requirements for self-service analytics,

faster discovery and prediction based on real-time

operational data, and the need to integrate multi-structured

and streaming data sets, BI and analytics platforms are one

of the fastest growing software markets.

To address these requirements, modern application data

stored in MongoDB can for the Trst time be easily explored

with industry-standard SQL-based BI and analytics

platforms. Using the BI Connector, analysts, data scientists

and business users can now seamlessly visualize

semi-structured and unstructured data managed in

MongoDB, alongside traditional data in their SQL

databases, using the same BI tools deployed within millions

of enterprises.

SQL-based BI tools such as Tableau expect to connect to a

data source with a Txed schema presenting tabular data.

This presents a challenge when working with MongoDB’s

dynamic schema and rich, multi-dimensional documents. In

order for BI tools to query MongoDB as a data source, the

BI Connector does the following:

• Provides the BI tool with the schema of the MongoDB

collection to be visualized. Users can review the schema

output to ensure data types, sub-documents and arrays

are correctly represented

• Translates SQL statements issued by the BI tool into

equivalent MongoDB queries that are then sent to

MongoDB for processing

• Converts the returned results into the tabular format

expected by the BI tool, which can then visualize the

data based on user requirements

Additionally, a number of Business Intelligence (BI)

vendors have developed connectors to integrate MongoDB

with their suites (without using SQL), alongside traditional

relational databases. This integration provides reporting, ad

hoc analysis, and dashboarding, enabling visualization and

analysis across multiple data sources. Integrations are

available with tools from a range of vendors including

Actuate, Alteryx, Informatica, JasperSoft, Logi Analytics,

MicroStrategy, Pentaho, QlikTech, SAP Lumira and Talend.

Atomicity in MongoDB

Relational databases typically have well developed features

for data integrity, including ACID transactions and

constraint enforcement. Rightly, users do not want to

sacriTce data integrity as they move to new types of

databases. With MongoDB, users can maintain many

capabilities of relational databases, even though the

11

http://docs.mongodb.com/manual/reference/sql-aggregation-comparison/

technical implementation of those capabilities may be

different.

MongoDB write operations are ACID at the document level

– including the ability to update embedded arrays and

sub-documents atomically. By embedding related Telds

within a single document, users get the same integrity

guarantees as a traditional RDBMS, which has to

synchronize costly ACID operations and maintain

referential integrity across separate tables.

Document-level atomicity in MongoDB ensures complete

isolation as a document is updated; any errors cause the

operation to roll back and clients receive a consistent view

of the document.

Despite the power of single-document atomic operations,

there may be cases that require multi-document

transactions. There are multiple approaches to this –

including using the findAndModify command that allows

a document to be updated atomically and returned in the

same round trip. findAndModify is a powerful primitive on

top of which users can build other more complex

transaction protocols. For example, users frequently build

atomic soft-state locks, job queues, counters and state

machines that can help coordinate more complex

behaviors. Another alternative entails implementing a

two-phase commit to provide transaction-like semantics.

The documentation describes how to do this in MongoDB,

and important considerations for its use.

Maintaining Strong Consistency

By default, MongoDB directs all read operations to primary

servers, ensuring strong consistency. Also, by default any

reads from secondary servers within a MongoDB replica

set will be eventually consistent – much like master / slave

replication in relational databases.

Administrators can conTgure the secondary replicas to

handle read trafTc using MongoDB’s Read Preferences,

which control how clients' read operations are routed to

members of a replica set.

Write Durability

MongoDB uses write concerns to control the level of write

guarantees for data durability. ConTgurable options extend

from simple ‘Tre and forget’ operations to waiting for

acknowledgments from multiple, globally distributed

replicas.

With a relaxed write concern, the application can send a

write operation to MongoDB then continue processing

additional requests without waiting for a response from the

database, giving the maximum performance. This option is

useful for applications like logging, where users are

typically analyzing trends in the data, rather than discrete

events.

With stronger write concerns, write operations wait until

MongoDB acknowledges the operation. This is MongoDB’s

default conTguration. MongoDB provides multiple levels of

write concern to address speciTc application requirements.

For example:

• The application waits for acknowledgment from the

primary server (default).

• Or the write operation is also replicated to one

secondary.

• Or the write operation is also replicated to a majority of

secondaries.

• Or write operation is also replicated to all of the

secondaries – even if they are deployed in different

data centers. (Users should evaluate the impacts of

network latency carefully in this scenario).

12

http://docs.mongodb.com/manual/tutorial/perform-two-phase-commits/
https://docs.mongodb.com/manual/core/read-preference/

FigurFigure 9:e 9: ConTgure Durability per Operation

The write concern can also be used to guarantee that the

change has been persisted to disk before it is

acknowledged.

The write concern is conTgured in the driver and is highly

granular – it can be set per-operation, per-collection or for

the entire database. Users can learn more about write

concerns in the documentation.

MongoDB uses write-ahead logging to an on-disk journal

to guarantee write operation durability and to provide crash

resilience.

Before applying a change to the database – whether it is a

write operation or an index modiTcation – MongoDB writes

the change operation to the journal. If a server failure

occurs or MongoDB encounters an error before it can

write the changes from the journal to the database, the

journaled operation can be reapplied, thereby maintaining a

consistent state when the server is recovered.

Implementing Validation & Constraints

Foreign Keys

As demonstrated earlier, MongoDB’s document model can

often eliminate the need for JOINs by embedding data

within a single, atomically updated BSON document. This

same data model can also reduce the need for Foreign Key

integrity constraints.

Document Validation

Dynamic schemas bring great agility, but it is also important

that controls can be implemented to maintain data quality,

especially if the database is powering multiple applications,

or is integrated into a larger data management platform

that feeds into upstream and downstream systems. Rather

than delegating enforcement of these controls back into

application code, MongoDB provides Document Validation

within the database. Users can enforce checks on

document structure, data types, data ranges, and the

presence of mandatory Telds. As a result, DBAs can apply

data governance standards, while developers maintain the

beneTts of a Uexible document model.

There is signiTcant Uexibility to customize which parts of

the documents are and arand are note not validated for any collection

– unlike an RDBMS where everything must be deTned and

enforced. For any key it might be appropriate to check:

• That it exists

• If it does exist, that the value is of the correct type

• That the value is in a particular format (regular

expressions can be used to check if the contents of the

string matches a particular pattern – that it’s a properly

formatted email address, for example)

• That the value falls within a given range

As an example, assume that the following checks need to

be enforced on the contacts collection:

• The year of birth is no later than 1994

• The document contains a phone number and/or an

email address

• When present, the phone number and email addresses

are strings

13

http://docs.mongodb.com/manual/core/write-concern/

That can be achieved by deTning this Document Validation

rule:

db.runCommand({
collMod: "contacts",
validator: {

$and: [
{year_of_birth: {$lte: 1994}},
{$or: [

{phone: { $type: "string" }},
{email: { $type: "string" }}

]}]
}})

Adding the validation checks to a collection is very intuitive

to any developer or DBA familiar with MongoDB, as

Document Validation uses the standard MongoDB Query

Language.

Enforcing Constraints With Indexes

As discussed in the Schema Design section, MongoDB

supports unique indexes natively, which detect and raise an

error to any insert operation that attempts to load a

duplicate value into a collection. A tutorial is available that

describes how to create unique indexes and eliminate

duplicate entries from existing collections.

Migrating Data to MongoDB

Project teams have multiple options for importing data from

existing relational databases to MongoDB. The tool of

choice should depend on the stage of the project and the

existing environment.

Many users create their own scripts, which transform

source data into a hierarchical JSON structure that can be

imported into MongoDB using the mongoimport tool.

Extract Transform Load (ETL) tools are also commonly

used when migrating data from relational databases to

MongoDB. A number of ETL vendors including Informatica,

Pentaho and Talend have developed MongoDB connectors

that enable a workUow in which data is extracted from the

source database, transformed into the target MongoDB

schema, staged then loaded into document collections.

FigurFigure 1e 10:0: Multiple Options for Data Migration

Many migrations involve running the existing RDBMS in

parallel with the new MongoDB database, incrementally

transferring production data:

• As records are retrieved from the RDBMS, the

application writes them back out to MongoDB in the

required document schema.

• Consistency checkers, for example using MD5

checksums, can be used to validate the migrated data.

• All newly created or updated data is written to

MongoDB only.

ShutterUy used this incremental approach to migrate the

metadata of 6 billion images and 20TB of data from Oracle

to MongoDB.

Incremental migration can be used when new application

features are implemented with MongoDB, or where

multiple applications are running against the legacy

RDBMS. Migrating only those applications that are being

modernized enables teams to divide projects into more

manageable and agile development sprints.

Incremental migration eliminates disruption to service

availability while also providing fail-back should it be

necessary to revert back to the legacy database.

Many organizations create feeds from their source

systems, dumping daily updates from an existing RDBMS

to MongoDB to run parallel operations, or to perform

application development and load testing. When using this

approach, it is important to consider how to handle deletes

14

http://docs.mongodb.com/manual/tutorial/create-a-unique-index/

to data in the source system. One solution is to create “A”

and “B” target databases in MongoDB, and then alternate

daily feeds between them. In this scenario, Database A

receives one daily feed, then the application switches the

next day of feeds to Database B. Meanwhile the existing

Database A is dropped, so when the next feeds are made

to Database A, a whole new instance of the source

database is created, ensuring synchronization of deletions

to the source data.

To learn more about each of these and other options

including using Apache Hadoop for ETL, review the

Migration Patterns webinar.

Operational Agility at Scale

The considerations discussed thus far fall into the domain

of the data architects, developers and DBAs. However, no

matter how elegant the data model or how efTcient the

indexes, none of this matters if the database fails to

perform reliably at scale or cannot be managed efTciently.

The Tnal set of considerations in migration planning should

focus on operational issues.

The MongoDB Operations Best Practices guide is the

deTnitive reference to learn more on this key area.

The Operations Guide discusses:

• Management, monitoring and backup with MongoDB

Ops Manager or MongoDB Cloud Manager, which is the

best way to run MongoDB within your own data center

or public cloud, along with tools such as mongotop,

mongostat and mongodump.

• High availability with MongoDB Replica Sets, providing

self-healing recovery from failures and supporting

scheduled maintenance with no downtime.

• Scalability using MongoDB auto-sharding (partitioning)

across clusters of commodity servers, with application

transparency.

• Hardware selection with optimal conTgurations for

memory, disk and CPU.

• Security including LDAP, Kerberos and x.509

authentication, Teld-level access controls, user-deTned

roles, auditing, encryption of data in-Uight and at-rest,

and defense-in-depth strategies to protect the

database.

MongoDB Atlas: Database as a

Service For MongoDB

MongoDB Atlas provides all of the features of MongoDB,

without the operational heavy lifting required for any new

application. MongoDB Atlas is available on-demand

through a pay-as-you-go model and billed on an hourly

basis, letting you focus on what you do best.

It’s easy to get started – use a simple GUI to select the

instance size, region, and features you need. MongoDB

Atlas provides:

• Security features to protect access to your data

• Built in replication for always-on availability, tolerating

complete data center failure

• Backups and point in time recovery to protect against

data corruption

• Fine-grained monitoring to let you know when to scale.

Additional instances can be provisioned with the push

of a button

• Automated patching and one-click upgrades for new

major versions of the database, enabling you to take

advantage of the latest and greatest MongoDB features

• A choice of cloud providers, regions, and billing options

MongoDB Atlas is versatile. It’s great for everything from a

quick Proof of Concept, to test/QA environments, to

complete production clusters. If you decide you want to

bring operations back under your control, it is easy to move

your databases onto your own infrastructure and manage

them using MongoDB Ops Manager or MongoDB Cloud

Manager. The user experience across MongoDB Atlas,

Cloud Manager, and Ops Manager is consistent, ensuring

that disruption is minimal if you decide to migrate to your

own infrastructure.

MongoDB Atlas is an ideal Tt for organizations looking to

MongoDB as a potential alternative to their relational

database, and who don't want to tie up their operations

teams for the evaluation process.

15

http://www.mongodb.com/presentations/webinar-mongodb-migration-patterns-how-customers-start-using-mongodb
https://www.mongodb.com/collateral/mongodb-operations-best-practices
https://www.mongodb.com/atlas

MongoDB Atlas is automated, it’s easy, and it’s from the

creators of MongoDB. Learn more and take it for a spin.

Supporting Your Migration:

MongoDB Services

MongoDB and the community offer a range of resources

and services to support migrations by helping users build

MongoDB skills and proTciency. MongoDB services

include training, support, forums and consulting. Refer to

the "We Can Help" section below to learn more about

support from development through to production.

MongoDB University

Courses are available for both developers and DBAs:

• FFrree, web-based classes,ee, web-based classes, delivered over 7 weeks,

supported by lectures, homework and forums to interact

with instructors and other students. Over 350,000

students have already enrolled in these classes.

• Public training eventsPublic training events held at MongoDB facilities.

• Private trainingPrivate training customized to an organization’s

speciTc requirements, delivered at their site.

Learn more.

Community Resources and Consulting

In addition to training, there is a range of other resources

and services that project teams can leverage:

• TTecechnichnical ral resouresourcesces for the community are available

through forums on Google Groups, StackOverUow and

IRC

• Consulting pacConsulting packkagesages include health checks, custom

consulting and access to dedicated Technical Account

Managers. More details are available from the

MongoDB Consulting page.

Conclusion

Following the best practices outlined in this guide can help

project teams reduce the time and risk of database

migrations, while enabling them to take advantage of the

beneTts of MongoDB and the document model. In doing

so, they can quickly start to realize a more agile, scalable

and cost-effective infrastructure, innovating on applications

that were never before possible.

We Can Help

We are the MongoDB experts. Over 2,000 organizations

rely on our commercial products, including startups and

more than a third of the Fortune 100. We offer software

and services to make your life easier:

MongoDB Enterprise Advanced is the best way to run

MongoDB in your data center. It’s a Tnely-tuned package

of advanced software, support, certiTcations, and other

services designed for the way you do business.

MongoDB Atlas is a database as a service for MongoDB,

letting you focus on apps instead of ops. With MongoDB

Atlas, you only pay for what you use with a convenient

hourly billing model. With the click of a button, you can

scale up and down when you need to, with no downtime,

full security, and high performance.

MongoDB Cloud Manager is a cloud-based tool that helps

you manage MongoDB on your own infrastructure. With

automated provisioning, Tne-grained monitoring, and

continuous backups, you get a full management suite that

reduces operational overhead, while maintaining full control

over your databases.

MongoDB Professional helps you manage your

deployment and keep it running smoothly. It includes

support from MongoDB engineers, as well as access to

MongoDB Cloud Manager.

Development Support helps you get up and running quickly.

It gives you a complete package of software and services

for the early stages of your project.

16

https://www.mongodb.com/cloud
https://university.mongodb.com/
https://www.mongodb.com/about/support/#community-support
https://www.mongodb.com/about/support/#community-support
https://www.mongodb.com/products/consulting
https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/atlas
https://www.mongodb.com/products/cloud-manager
https://www.mongodb.com/products/mongodb-professional
https://www.mongodb.com/products/development-support

MongoDB Consulting packages get you to production

faster, help you tune performance in production, help you

scale, and free you up to focus on your next release.

MongoDB Training helps you become a MongoDB expert,

from design to operating mission-critical systems at scale.

Whether you’re a developer, DBA, or architect, we can

make you better at MongoDB.

Contact us to learn more, or visit mongodb.com.

Resources

For more information, please visit mongodb.com or contact

us at sales@mongodb.com.

Case Studies (mongodb.com/customers)

Presentations (mongodb.com/presentations)

Free Online Training (university.mongodb.com)

Webinars and Events (mongodb.com/events)

Documentation (docs.mongodb.com)

MongoDB Enterprise Download (mongodb.com/download)

MongoDB Atlas database as a service for MongoDB

(mongodb.com/cloud)

New York • Palo Alto • Washington, D.C. • London • Dublin • Barcelona • Sydney • Tel Aviv

US 866-237-8815 • INTL +1-650-440-4474 • info@mongodb.com

© 2016 MongoDB, Inc. All rights reserved.

17

https://www.mongodb.com/products/consulting
https://university.mongodb.com/private_training
https://www.mongodb.com/contact
https://www.mongodb.com/
http://www.mongodb.com
mailto:sales@mongodb.com
http://mongodb.com/customers
http://mongodb.com/presentations
http://university.mongodb.com
http://mongodb.com/events
http://docs.mongodb.com
http://mongodb.com/download
https://www.mongodb.com/cloud

	Table of Contents
	Introduction1
	Organizing for Success1
	Schema Design2
	From Rigid Tables to Flexible and Dynamic BSON Documents3
	Other Advantages of the Document Model4
	Joining Collections for Data Analytics5
	Defining the Document Schema5

	Modeling Relationships with Embedding and Referencing5
	Embedding5
	Rerencing6
	Different Design Goals6

	Indexing7
	Index Types7
	Optimizing Performance With Indexes8

	Schema Evolution and the Impact on Schema Design9

	Application Integration10
	MongoDB Drivers and the API10
	Mapping SQL to MongoDB Syntax10
	MongoDB Aggregation Framework10
	MongoDB Connector for BI11
	Atomicity in MongoDB11
	Maintaining Strong Consistency12
	Write Durability12
	Implementing Validation & Constraints13
	Foreign Keys13
	Document Validation13
	Enforcing Constraints With Indexes14

	Migrating Data to MongoDB14
	Operational Agility at Scale15
	MongoDB Atlas: Database as a Service For MongoDB15
	Supporting Your Migration: MongoDB Services16
	MongoDB University16
	Community Resources and Consulting16

	Conclusion16
	We Can Help16
	Resources17
	Introduction
	Organizing for Success
	Schema Design
	From Rigid Tables to Flexible and Dynamic BSON Documents
	Other Advantages of the Document Model
	Joining Collections for Data Analytics
	Defining the Document Schema

	Modeling Relationships with Embedding and Referencing
	Embedding
	Referencing
	Different Design Goals

	Indexing
	Index Types
	Optimizing Performance With Indexes

	Schema Evolution and the Impact on Schema Design

	Application Integration
	MongoDB Drivers and the API
	Mapping SQL to MongoDB Syntax
	MongoDB Aggregation Framework
	Business Intelligence Integration – MongoDB Connector for BI
	Atomicity in MongoDB
	Maintaining Strong Consistency
	Write Durability
	Implementing Validation & Constraints
	Foreign Keys
	Document Validation
	Enforcing Constraints With Indexes

	Migrating Data to MongoDB
	Operational Agility at Scale
	MongoDB Atlas: Database as a Service For MongoDB
	Supporting Your Migration: MongoDB Services
	MongoDB University
	Community Resources and Consulting

	Conclusion
	We Can Help
	Resources

